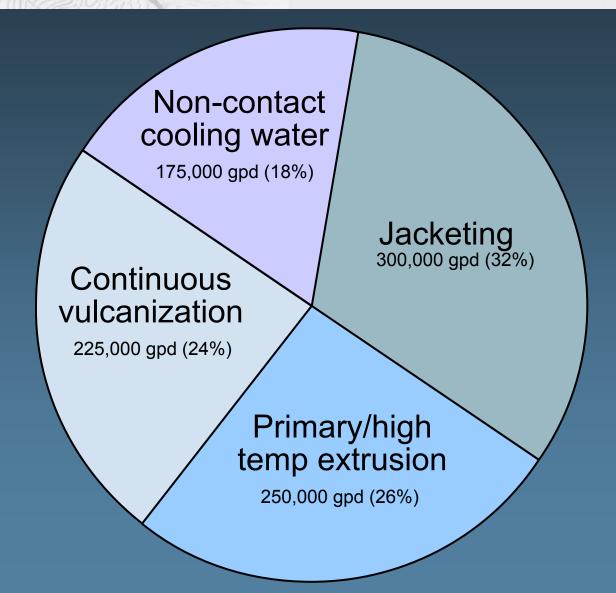


Closed-Loop/Water Reuse System for a Large Wire Extrusion Facility

Timothy St. Germain, P.E. April 18, 2006

Project Background

- 1M square foot wire facility
- Extrudes plastic and rubber compounds over single strand and woven copper wires
- Diverse, dynamic product mix
- Long standing ties to adjacent river
 - Non-contact and contact cooling water
- Facility feed water from river
- NPDES discharge to river


Project Background

- 700K to 1M GPD river withdrawal
 - 800K GPD average
- Once-through contact/non-contact cooling
- Contact cooling for extrusion baths
- Non-contact cooling for extrusion and other machinery
- Under-serviced bath areas

Project Background

- Hot and cold water baths
- No attempts for heat recapture
- Mixing of all cooling water prior to discharge
- Cold water baths required use of chillers (ongoing)
- Hot water baths required dedicated boiler

Water Use by Process

Permit Requirements

- Requirement to reduce water use
 - Order imbedded in NPDES permit
- Order steps
 - Study
 - Design/regulatory approval
 - Construction/regulatory approval
 - Start-up and operation
- Stringent water quality based and categorical limitations for metals, BOD and TSS

Project Study/Concept Design

- NPDES permit limits likely unattainable without advanced treatment.
 - Some leaching from extrusion materials
 - Treatment technologies / interferences
 - Complicated by river water quality (BOD/TSS)
- Simplistic decision process to develop system closed loop/water reuse system

Project Study/Concept Design

- Decision made to sever tie with adjacent receiving stream
 - Projected reduction in regulatory liabilities
- Switch to high quality municipal feed and low-volume sewer discharge - 'blowdown'
- Heat recovery for hot water baths
- Water reuse/recycle to rinsewater quality 'limit' product driven

Project Concerns

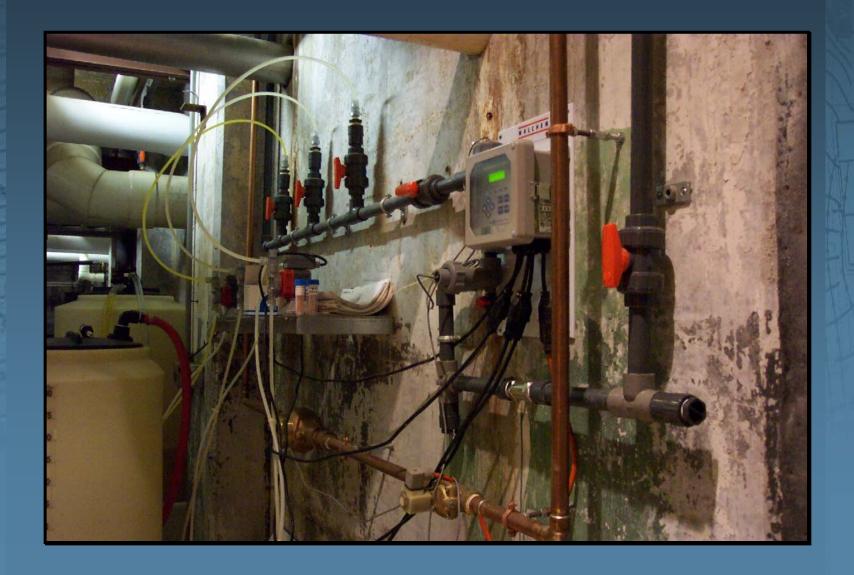
- Overwhelming concern on quality of re-circulating rinse.
- Material leaching, microbiological growth and metals dissolution could cause problematic rinse quality issues.
- Numerous steps built into design and construction to minimize potential for rinsewater quality degradation.

System Design

- Incoming feed water TDS 25 to 50 mg/L
- Level of recirculation / reuse to be determined in practice - dynamically
- TDS balance maintained through cooling tower drift, system 'blowdown' and filter backwash
- Organic materials leaching concerns

System Design – Bacterial Growth Reduction Measures

- Chlorinated municipal feed
- Algaecide/corrosion inhibitor in process
- Multi-media filtration and system backwash to sanitary sewer



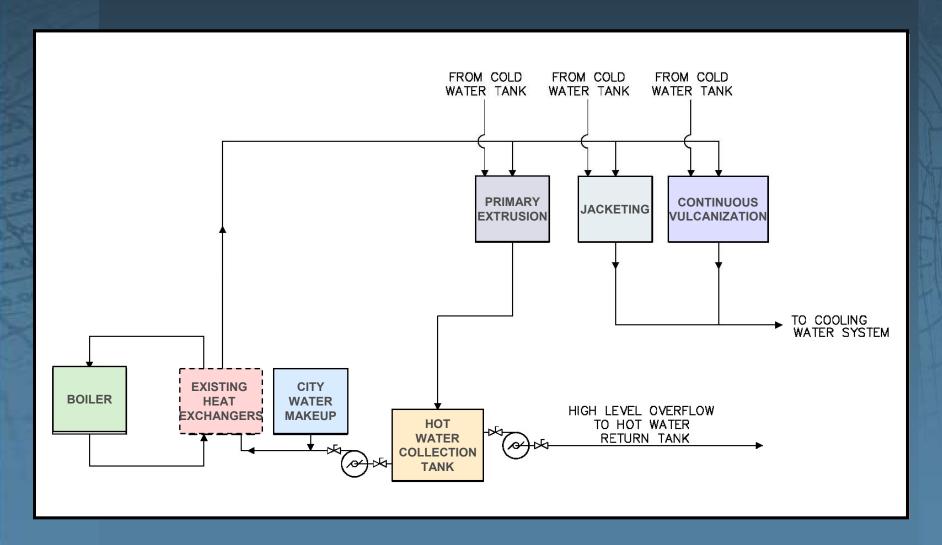
Side Stream Filter

Conductivity/pH Meter

F

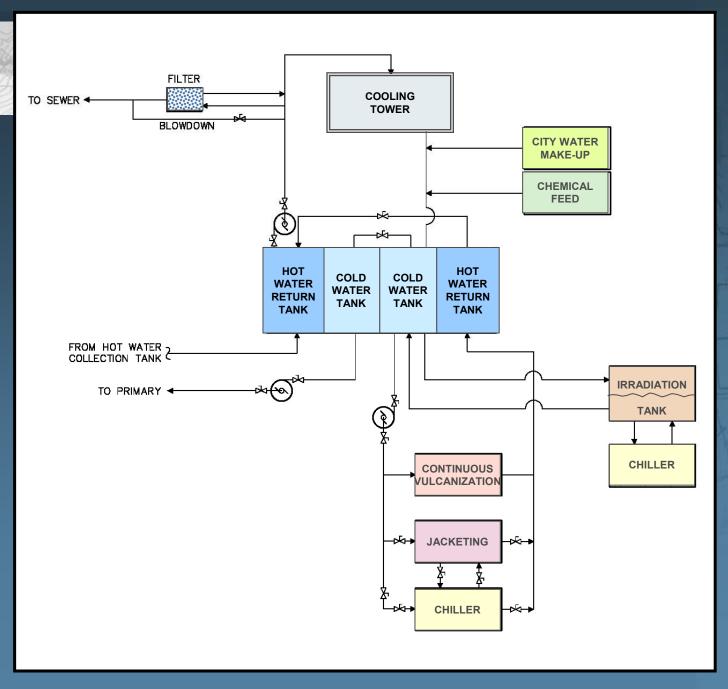
System Design - Transfer Piping

- No iron or copper piping used in process
- Schedule 5 stainless steel used in almost all transfer piping
- Some PVC used in drain piping
- Abandonment of miles of existing piping
- Lined concrete recirculation sumps


F

System Design - Heat Recovery

- Hot water baths used for certain extrusion processes to avoid material cracking
- Majority of hot water use in one process
- Hot water extrusion baths captured, pumped through heat exchanger prior to re-entry to recirculation system
- Few months payback on heat recovery system



Heat Recovery Schematic

Closed
Loop
System
Cold
Water
Schematic

System Construction

- Construction on major items non-problematic
- Numerous field challenges
- History of water tap tie-ins with no records
- Need to completely eliminate contact/non-contact cooling water discharge
- Elimination of NPDES discharge not a goal, but a requirement

System Construction

- \$1.5M construction cost
- Design-build approach
- Numerous field decisions due to historic, undocumented pipe chases
- 6 month construction window
- \$90,000 received in energy credits (VFDs on cooling tower, transfer pumps)

Transfer Pumps

High Pressure Pumps

Cooling Tower

Intake water

800K gpd river water intake reduced to 40K gpd municipal feed

System discharge

- 800K gpd NPDES process wastewater discharge reduced to 4K gpd system blowdown to sanitary sewer
- No pretreatment standard for rubber categories to sewer for BOD/TSS
- Monitoring reduced by 95 percent

- Cooling bath 'vigor' maintained or increased
- Production increase with upgrade of under-serviced baths areas
- 800K (+) gpd cooling 40K gpd makeup
- 20 cycles of reuse/recirculation
 - 35K gpd evaporation
 - 4K gpd system blowdown, 1K gpd filter backwash

- 95% reduction in feed flows
 - Cost savings balancing abandonment of large supply system and tankage with purchase of municipal feed
- 99.5% reduction in discharge
 - Commensurate reduction in wastewater monitoring and fees

- 30 mmbtus recovered daily (\$200 in fuel per day), which offset new system energy needs (e.g., cooling tower)
- Sizable maintenance reduction
 - Elimination of supply-side system
 - Upgrade of key, 'problematic' sites in system
- ROI not calculated, but significant reduction in environmental liability